Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes.

نویسندگان

  • Stuart E Jones
  • Ryan J Newton
  • Katherine D McMahon
چکیده

Water entering lakes from the surrounding watershed often delivers large amounts of terrestrial-derived dissolved organic carbon (DOC) that can contribute to aquatic bacterial production. However, research suggests that phytoplankton-derived DOC is more labile than its terrestrial counterpart, owing to microbial processing of terrestrial-derived DOC along its flow path to surface waters. The ratio of water colour (absorbance at 440 nm) to chlorophyll a has been suggested as a simple measure of the relative contribution of terrestrial and aquatic primary production to aquatic secondary production. To explore the correlation between primary DOC source and the occurrence of bacterial taxonomic groups, we conducted a survey of bacterial 16S rRNA gene composition in 15 lakes positioned along a water colour : chlorophyll a gradient. Our goal was to identify bacterial taxa occurrence patterns along the colour : chlorophyll a gradient that may indicate a competitive advantage for bacterial taxa using terrestrial or aquatic carbon. We observed a large number of bacterial taxa occurrence patterns suggestive of carbon substrate niche partitioning, especially when relatively highly resolved taxonomic groups were considered. Our survey supports the hypothesis that bacterial taxa partition along a carbon substrate source gradient and highlights carbon source-bacterial interactions that should be explored further.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Climate‐related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes

Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organ...

متن کامل

Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes.

Bacterial community composition was monitored in four shallow eutrophic lakes during one year using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified prokaryotic rDNA genes. Of the four lakes investigated, two were of the clearwater type and had dense stands of submerged macrophytes while two others were of the turbid type characterized by the occurrence of phytoplankton blooms. O...

متن کامل

Allochthonous carbon is a major regulator to bacterial growth and community composition in subarctic freshwaters

In the subarctic region, climate warming and permafrost thaw are leading to emergence of ponds and to an increase in mobility of catchment carbon. As carbon of terrestrial origin is increasing in subarctic freshwaters the resource pool supporting their microbial communities and metabolism is changing, with consequences to overall aquatic productivity. By sampling different subarctic water bodie...

متن کامل

Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden

We compared the stable carbon isotopic composition (d13C) of crustacean zooplankton with that of potential carbon sources in 15 lakes in northern Sweden with different dissolved organic carbon (DOC) concentrations (2–9 mg L21) to test the hypothesis that zooplankton depended more on allochthonous carbon in humic lakes than in clear-water lakes. Based on d13C signature, we found that the pool of...

متن کامل

Allochthonous organic carbon decreases pelagic energy mobilization in lakes

Over the past decade, it has been shown that unproductive lakes worldwide are net heterotrophic because bacterial respiration of allochthonous organic carbon (AOC) makes community respiration exceed primary production. Net heterotrophy means that aquatic systems are net sources of CO2 to the atmosphere but also that bacterial utilization of AOC increases bacterioplankton production (BP) and bac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental microbiology

دوره 11 9  شماره 

صفحات  -

تاریخ انتشار 2009